Lecture 10:
Graph Theory

Part 2 of 3



Outline for Today

« Walks, Paths, and Reachability
 Walking around a graph.

« Application: Local Area Networks
 Graphs meet computer networking.

* Trees

A fundamental class of graphs.



Recap from Last Time



Graphs and Digraphs

A graph is a pair G = (V, E) of a set of
nodes V and set of edges E.
 Nodes can be anything.

 Edges are unordered pairs of nodes. If
{u, v} € E, then there’s an edge from u to v.

« Adigraph is a pair G = (V, E) of a set of
nodes V and set of directed edges E.

 Each edge is represented as the ordered pair
(u, v) indicating an edge from u to v.
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Two nodes in an undirected graph are called
adjacent if there is an edge between them.
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Two nodes in an undirected graph are called
adjacent if there is an edge between them.



Using our Formalisms

« Let G = (V, E) be an (undirected) graph.

 Intuitively, two nodes are adjacent it they're
linked by an edge.

 Formally speaking, we say that two nodes
u, v € Vare adjacent it we have {u, v} € E.

 There isn’t an analogous notion for directed
graphs. We usually just say “there’s an edge
from u to v’ as a way of reading (u, v) € E
aloud.



New Stuff!



Walks, Paths, and Reachability
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‘ SFE Sac, SLC, Port, Sea I



Bar Flag
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‘ SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea I




Berkeley Pit (Butte, MT)
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

a) (b

‘ SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea I




A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
iIsn-1.

Bar Flag

a) (b

hoe
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
iIsn-1.

(This walk has
Bar Fla
s length 10, but
\ [ visits 1 cities,)
LA Phoe

SF, Sac, LA, Phoe, Flag, Bar, LV, Mon, SLC, But, Sea



Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

@—Gac SL9 The length of the walk vy, ..., vn
isn-1.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

Which of these are walks in this graph?

SF
SF, Sac
SE Sac, SF

Answer at
htips://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev

Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

@—Gac SL9 The length of the walk vy, ..., vn
isn-1.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn

isn-1.



Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
1Isn-1.
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Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn

isn-1.
@9 A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
G\D cannot have length zero.)
Bar
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Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn

isn-1.
@9 A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
G\D cannot have length zero.)
Bar (This closed wa\k
has length nine
and visits nine

different cities.,)

Sac, Port, Sea, But, SLC, Mon, LV, Bar, LA, Sac
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk

cannot have length zero.)
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk

cannot have length zero.)

Which of these are closed walks?

SF
SE Sac
SF, Sac, SF

Answer at
https://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev
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a sequence of one or more
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any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk

cannot have length zero.)




A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk

cannot have length zero.)




A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

Sac The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

‘ SE Sac, LA I




A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

Sac The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

Sac The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

Sac The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

Sac The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

Sac The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

‘ SF, Sac, LA, Phoe, Flag, Bar, LA I
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
1Isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

‘ SF, Sac, LA, Phoe, Flag, Bar, LA I



A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

Sac The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.
‘ SE Sac, LA, Phoe, Flag, Bar, LA I

(This walk has
length six,)




A walk in a graph G = (V, E) is
a sequence of one or more
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any two consecutive nodes in
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The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.




A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

Sac

A path in a graph is walk that
does not repeat any nodes.



‘ Sac, SLC I

A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.



‘ Sac, SLC, Port I

A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.



‘ Sac, SLC, Port, Sac, SLC I

A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.



‘ Sac, SLC, Port, Sac, SLC, Port, Sac I

A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the

first/last node.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the

first/last node.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the

first/last node.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

The length of the walk vy, ..., vn
isn-1.

A closed walk in a graph is a
walk from a node back to itself.
(By convention, a closed walk
cannot have length zero.)

A path in a graph is walk that
does not repeat any nodes.

A cycle in a graph is a closed
walk that does not repeat any
nodes or edges except the

first/last node.




Sea But

A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.



Sea But

<E§rt

Sac

wnn
\o/

A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.



Sea But A walk in a graph G = (V, E) is
a sequence of one or more

nodes vi, vz, Vs, ..., Va Such that
Port any two consecutive nodes in
the sequence are adjacent.

Sac SI.C A path in a graph is walk that
does not repeat any nodes.




But A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.




Sea But A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.




Sea But

A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.

A node v is reachable from a
node u when there is a path

from u to v.
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reachable from SF
atfer these road
closures., )

A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.

A node v is reachable from a
node u when there is a path
from u to v.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.

A node v is reachable from a
node u when there is a path
from u to v.

A graph G is called connected
when all pairs of distinct nodes
in G are reachable.
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.

A node v is reachable from a
node u when there is a path
from u to v.

A graph G is called connected
when all pairs of distinct nodes
in G are reachable.

(This graph 1s
not connected.)
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A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.

A node v is reachable from a
node u when there is a path
from u to v.

A graph G is called connected
when all pairs of distinct nodes
in G are reachable.




A walk in a graph G = (V, E) is
a sequence of one or more
nodes vi, vz, Vs, ..., Va such that
any two consecutive nodes in
the sequence are adjacent.

A path in a graph is walk that
does not repeat any nodes.

A node v is reachable from a
node u when there is a path
from u to v.

A graph G is called connected
when all pairs of distinct nodes
in G are reachable.

A connected component (or
CC) of G is a set consisting of a
node and every node reachable
from it.




Fun Facts

 Here’s a collection of useful facts about graphs that you can
take as a given.
« Theorem: If G = (V, E) is a (directed or undirected) graph and

u, v € V, then there is a path from u to v if and only if there’s a walk
from u to v.

« Theorem: If G is an undirected graph and C is a cycle in G, then C’s
length is at least three and C contains at least three nodes.

« Theorem: If G = (V, E) is an undirected graph, then every node in V
belongs to exactly one connected component of G.

« Theorem: If G = (V, E) is a (directed or undirected) graph and u, yo,
Vi, ..., ym, vis a walk from u to v and v, zo, 21, ..., Zn, X is a walk from v
to x, then u, yo, y1, ..., ym, v, 20, 21, ..., Zn, X 1s a walk from u to x.

* Looking for more practice working with formal definitions?
Prove these results!



Time-Out for Announcements!



Things to Have on Your Radar

« Extra credit pre-midterm reflection due Sunday.

 Problem Set 4 releases after class today. Designed to
be shorter than usual.

 Make sure to review your feedback on PS1 and PS2.

 “Make new mistakes.”
 Come talk to us if you have questions!

 Exam Tuesday. Check seating assignment and
logistics on course website.

 There’s a huge bank of practice problems up on the
course website.

* Best of luck - you can do this!



Participation Opt-Out

* By default, all on-campus students have
5% of their grade allocated from lecture

attendance and participation.

 If you are an on-campus student and
want to opt out, shifting that 5% onto
your final exam, fill out the opt-out form
on Ed by tonight (Friday) at 11:59 PM.



Back to CS103!



Application: Local Area Networks



The Internet and LANS

* The internet consists of several separate local
area networks (LANSs) that are
“internetworked” together.

 L.ocal area networks cover small areas - a
single hallway in a dorm, an office building, a
college campus, etc.

* The internet then links those smaller LANSs into
one giant network where everyone can talk to
everyone.

 Focus for today: How do messages flow
through a LAN?
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Message Movement

« When a computer Q
receives a message, it
repeats that message

on all its links except
the one it received

o

the message on. @ ‘\
* The computers don't /
inspect the message
contents or try to be
clever - it’s purely
“came in on link X,
goes out on all links

but X.”
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Two Pitfalls



The network graph
must be connected.
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What will happen if this computer sends a
message through the network?

Answer at

https://cs103.stanford.edu/pollev



https://cs103.stanford.edu/pollev
















Broadcast Storms

e A broadcast storm occurs when there’s
a cycle in the network graph.

* A single message can repeat forever, or
exponentially amplify until the network
fails.

* Solution: Don’t let the network graph
have any cycles.

« A graph G = (V, E) is called acyclic if it
has no cycles.



You have a collection of computers
that need to be wired up into a LAN.
How should you choose the shape of

the network?
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Minimally Connected

(Connected, but deleting
any edge disconnects
its endpoints.)

I‘\
J\

Connected, Acyclic

If any of these
conditions hold,
then all of these
conditions hold.

A graph with any
of these properties
is called a tree.

Maximally Acyclic

(Acyclic, but adding
any missing edge
creates a cycle.)




Minimally Connected
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What do we know about x and y
given that T is connected?

Answer at

https://cs103.stanford.edu/pollev
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Check the appendix for the
other two steps of the proot.



More to Explore

* A tree kind of seems like a bad way to design a
network. (Why?)

* Actual local area networks allow for cycles. They
use something called the spanning tree
protocol (STP) to selectively disable links to
form a tree.

* Routing through the full internet - not just within
a LAN - is a fascinating topic in its own right.

« Take CS144 (networking) for details!



Recap tfrom Today

 Walks and closed walks represent ways
of moving around a graph. Paths and
cycles are “redundancy-free” walks and
cycles.

» Trees are graphs that are connected and
acyclic. They're also minimally-connected
graphs and maximally-acyclic graphs.

* Trees have applications throughout CS,
including networking.



Next Time

« The Pigeonhole Principle

* A simple, powertul, versatile theorem.
 Graph Theory Party Tricks

* Applying math to graphs of people!
A Little Movie Puzzle

« Who watched what?



Appendix



—
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Connected, Acyclic

Minimally Connected

(Connected, but deleting
any edge disconnects
its endpoints.)
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(Connected, but deleting (Acyclic, but adding
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